Weak ergodicity of population evolution processes.

نویسنده

  • H Inaba
چکیده

The weak ergodic theorems of mathematical demography state that the age distribution of a closed population is asymptotically independent of the initial distribution. In this paper, we provide a new proof of the weak ergodic theorem of the multistate population model with continuous time. The main tool to attain this purpose is a theory of multiplicative processes, which was mainly developed by Garrett Birkhoff, who showed that ergodic properties generally hold for an appropriate class of multiplicative processes. First, we construct a general theory of multiplicative processes on a Banach lattice. Next, we formulate a dynamical model of a multistate population and show that its evolution operator forms a multiplicative process on the state space of the population. Subsequently, we investigate a sufficient condition that guarantees the weak ergodicity of the multiplicative process. Finally, we prove the weak and strong ergodic theorems for the multistate population and resolve the consistency problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

Weak law of large numbers for some Markov chains along non homogeneous genealogies

We consider a population with non-overlapping generations, whose size goes to infinity. It is described by a discrete genealogy which may be time non-homogeneous and we pay special attention to branching trees in varying environments. A Markov chain models the dynamic of the trait of each individual along this genealogy and may also be time nonhomogeneous. Such models are motivated by transmiss...

متن کامل

Ergodicity for Time Changed Symmetric Stable Processes

In this paper we study the ergodicity and the related semigroup property for a class of symmetric Markov jump processes associated with time changed symmetric α-stable processes. For this purpose, explicit and sharp criteria for Poincaré type inequalities (including Poincaré, super Poincaré and weak Poincaré inequalities) of the corresponding non-local Dirichlet forms are derived. Moreover, our...

متن کامل

The study of the situation of administrative system evolution with emphasizing on its root factors on hospitals affiliated to Mazandaran Medicine Science University

Background and purpose: the administrative system of each country is important because of its direct relationship with different groups of people. The purpose of this paper is studying the status of the administrative system evolution in Mazandaran university of medical science with emphasizing on root factors. Materials and methods: In this research, three aspects, organizational structure, jo...

متن کامل

Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes.

We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences

دوره 96 2  شماره 

صفحات  -

تاریخ انتشار 1989